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Abstract Graphical models (alternatively, Bayesian belief networks, path analysis
models) are increasingly used for modeling complex ecological systems (e.g., Lee, In:
Ferson S, Burgman M(eds) Quantative methods for conservation biology. Springer,
Berlin Heilin Heideslperk New York, pp.127–147, 2000; Borsuk et al., J Water Res
Plann Manage 129:271–282, 2003). Their implementation in this context leverages
their utility in modeling interrelationships in multivariate systems, and in a Bayes-
ian implementation, their intuitive appeal of yielding easily interpretable posterior
probability estimates. However, methods for incorporating correlational structure to
account for observations collected through time and/or space—features of most eco-
logical data—have not been widely studied; Haas et al. (AI Appl 8:15–27, 1994) is
one exception. In this paper, an “isomorphic” chain graph (ICG) model is introduced
to account for correlation between samples by linking site-specific Bayes network
models. Several results show that the ICG preserves many of the Markov properties
(conditional and marginal dependencies) of the site-specific models. The ICG model
is compared with a model that does not account for spatial correlation. Data from
several stream networks in the Willamette River valley, Oregon (USA) are used. Sig-
nificant correlation between sites within the same stream network is shown with an
ICG model.
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1 Introduction

Graphical models (e.g., Bayesian belief networks, path analysis models) are increas-
ingly used for modeling complex ecological systems (e.g., Lee 2000; Borsuk et al. 2003).
Their implementation in this context leverages their utility in modeling directional
(or influential) relationships in multivariate systems. For example, we might connect
land-use characteristics to indicators of macro-invertebrate health in a stream, where
the connection is influenced by water temperature, riparian condition and stream
chemistry. Of course, we must temper any causal language with assumptions of no
confounding factors and/or with scientific arguments regarding the ecological pro-
cess. Figure 1 shows a hypothetical graphical model for the situation just described.
Each node represents a random variable, and the directed edges between nodes indi-
cate influences (in the absence of unmeasured confounding factors) of variables on
each other. A Bayesian implementation—Bayes networks—has the added intuitive
appeal of providing posterior probability estimates for the parameters of each node
distribution and the parameters associated with each directed edge.

To estimate the parameters of a model like the one shown in Fig. 1, we typically
assume multivariate observations that are independent and identically distributed.
Independence between observations for ecological processes is particularly suspect,
as these data are often collected in spatial and/or temporal proximity. Haas et al.
(1994) incorporate serial correlation into a Bayes net model for Aspen stand growth
by connecting nodes from within-year Bayes nets to subsequent within-year Bayes
nets in a “feed-forward” fashion, resulting in a 12-year model with close to 500 nodal
distributions.

As an alternative, we introduce isomorphic chain graphs (ICG) in which obser-
vations at different locations are assumed to have identical graphical structures, but
observations that are close together in space are connected with a chain (or undi-
rected) link between corresponding nodes. Figure 2 shows an isomorphic chain graph
model for two observations at neighboring sites. The structure of the within-site mod-
els is the same as that of Fig. 1; we simply connect the two observations with a chain
link (an undirected edge) at the health metric node. The ICG allows us to leverage
similarities in underlying ecological processes across sites for estimating parameters
of the graphical structure, while also accounting for correlation through space. We
show that this ICG connection preserves many of the conditional and marginal inde-
pendence properties from the unconnected (or independent) case, thereby preserving
the influences between univariate components within each site.

Fig. 1 Hypothetical graphical
model showing relationships
between variables in an
ecological system
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Site Site1 2

Fig. 2 Hypothetical isomorphic chain graph structure for two neighboring sites in an ecological
system

Next, we describe data sampled from several stream networks in the Willamette
Valley Ecoregion, Oregon. Using this example, we briefly catalog some graph theory
terminology and notation in Sect. 3 (a more extensive catalog is provided in Appendix
A). We formally define the ICG model in Sect. 4 and present the main results regard-
ing conditional and marginal independencies. To illustrate the ICG model, in Sect. 5,
we parameterize spatial correlation between observations at neighboring sites in the
Willamette Valley data using a spatial autoregressive model (Ord, 1975). We fit sev-
eral models to the Willamette Valley data and compare the results to a multiple linear
regression model and a non-correlated graphical model (a Bayes network model). We
conclude with several remarks on further extensions to the ICG model that may be
effective in addressing additional spatial dependencies across complex multivariate
observations.

2 Willamette river basin data

We use data collected from wadeable streams in the Willamette Valley as part of Envi-
ronmental protection Agencies (EPAs) Environmental Monitoring and Assessment
Program (EMAP) and Ag-Riparian Project. Data were collected in summer 1996
and 1997, as detailed in Van Sickle et al. (2004). In summer 1999, as part of the sec-
ond phase of the Ag-Riparian project, five of the sites were selected for an intensive
longitudinal upstream sampling program with from five to seven new sample sites in
each of the upstream networks at intervals of 1 – 3 km. Figure 3 shows the original
sample locations in the Willamette Valley, as well as the site distribution in each of
the five intensively sampled stream networks. It is these fine sampling interval stream
networks that motivate the extension from Bayes network models to ICG models.
The original stream sampling sites are far enough apart in space so that any spatial
correlation between sites is likely to be negligible; it is the within-network dependence
that we model here.

The Willamette Valley dataset is rich with information on stream dynamics and
riparian condition, as well as on the biological condition of stream denizens; Table 1
provides a partial list of these measurements. To illustrate the isomorphic chain
graph and its properties, we focus on a ratio of observed-to-expected macro-inver-
tebrate taxa richness for disperser taxa as a stream health index. This measure
indicates a detrimental impact on the macro-invertebrate community if the ratio is
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Fig. 3 Map of Willamette Valley showing sampling locations

Table 1 Partial list of variables in the Willamette Valley Data

Variable Description

Agricultural Percent of agricultural land cover within 150 m wide
upstream network buffer

Developed Percent of developed land cover within 150 m wide
upstream network buffer

Channel simplification Essentially, a coefficient of variation for mean stream depth
Phosphorous Total phosphorous content of the sample
Temperature Temperature of the water sample
Riparian condition An index of riparian habitat quality
Watershed area km2; upstream drainage area
Elevation Meters above sea level
Stream power calculated as ( stream slope × (watershed area)1/4

Longitude
Latitude
DOE Marcoinvertebrate dispersers observed-to-expected ratio

substantially less than one. Predictive modeling is a widely used approach that eval-
uates the biotic integrity of a sampled site by comparing its observed biota to the
biota to be expected if the site were in reference condition and minimally altered by
human activities (Wright et al. 1993). Clarke et al. (1996) give statistical details of the
predictive modeling approach.

Our “dispersers” observed-to-expected ratio (DOE) is essentially the same as the
Willamette invertebrate observed/expected index (WINOE) metric used in the assess-
ment of Van Sickle et al. (2004), except that it uses only taxa that are considered to be
dispersers—those taxa whose members emerge from the stream as adults and have
the potential to fly some distance away to reproduce. Strongly dispersive taxa can
move on the order of tens of meters up to a few kilometers. Downstream drift is also
a major dispersal mechanism for all taxa in these streams. For comparison, we use
variables identified by Van Sickle et al. (2004) for modeling the observed-to-expected
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index of macro-invertebrate health: percent agricultural land, percent developed land,
longitude, and stream power.

3 Graphical model terminology and notation

Pictorially, a graph consists of nodes and edges. Directed edges are noted with arrows
(as in v −→ w) and undirected edges by lines (as in v — w). Mathematically, a graph
G is a pair of sets, (V, E), where V = {v1, v2, . . . , vk} denotes a finite set of vertices
(nodes or univariate variables) and

E = {(v, w) : v, w,∈ V and there is a directed edge from v to w},
denotes a set of edges. If both of (v, w) and (w, v) are in E, then there is an undirected
edge between v and w.

A path is an ordered sequence of vertices connected by directed and/or undirected
edges. If a path consists only of directed (undirected) edges it is called directed (undi-
rected). In particular, a graph with only directed edges and no cycles (a cycle is a
path leading to and from the same node) is called an acyclic directed graph (ADG).
A chain graph (CG) has a combination of directed and undirected edges, but must
have no directed or semi-directed cycles (a cycle in which at least one of the edges is
directed). For an ADG, G = (V, E), and a subset A of V, the parents of A, denoted
Pa(A), comprise the set of all nodes v ∈ V, such that (v, a) ∈ E for some a ∈ A.

The Markov factorization for ADG (Pearl 2000, p. 16) allows for expressing the
joint probability distribution of nodes in an ADG as the product of each node, condi-
tional only on its parents. That is, the joint probability distribution of the vertices can
be written:

f (v1, . . . , vk) =
k∏

j=1

f (vj|Pa(vj)).

For our purposes, two ADG are said to be identically distributed if their vertex and
edge sets correspond (this is stronger than saying that their probability distributions
can be factored in the same manner).

Pearl (1988) introduced d-separation as a criterion for identifying conditional and
marginal independence (equivalently, Markov factorizations) in ADG models, and
Lauritzen et al. (1990) developed an algorithm for showing d-separation. Andersson
et al. (2001) followed with AMP-separation, the parallel criterion and method for
CG models (AMP stands for “alternative Markov property”). Definitions for d-sep-
aration and AMP-separation are provided in Appendix A, but their benefits, due
to Verma and Pearl (1992) for ADG and to Andersson et al. (2001) for CG, are in
providing criteria for identifying conditional and marginal independencies in ADG
and CG models, respectively. We rely on AMP-separation for our main results in the
next section.

4 Isomorphic chain graphs

To estimate the parameters of an ADG model such as the one in Fig. 1, we assume
that the observations (samples) used to estimate both node and edge parameters are
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independent and identically distributed. The presumption is that the same graphical
structure exists at all sites independently of other sites. In what follows, we relax this
assumption, allowing for associational dependence across samples in what we term
an “isomorphic” chain graph (ICG). In words, an ICG is a chain graph constructed
by connecting identical ADG with undirected edges between corresponding univar-
iate components or nodes; an example is shown in Fig. 2. In this way, the general
structure of the ADG is preserved across sites, but we allow a spatial correlation
between corresponding univariate components at those sites. A formal definition
follows.

Let G1 = (V1, E1); G2 = (V2, E2); . . . ; Gn = (Vn, En) be identically distributed
ADG, where Vi = {vi1, . . . , vik} for i = 1, . . . , n are ordered k-tuples. Then

G =
⎛

⎝
⋃

i=1,...,n

Vi,
⋃

i=1,...,n

Ei ∪ E∗j

⎞

⎠ ,

where for some j ∈ {1, . . . , k},
E∗j = {(vij, wi′j), (wi′j, vij) : vij ∈ Vi, wi′j ∈ Vi′ for i, i′ ∈ Ij}

is an ICG with corresponding index set, Ij, which identifies the nodes with chain link
connections. The nodes in E∗j are called the isomorphic nodes.

In the hypothetical ICG model of Fig. 2 the isomorphic connection is made at the
bottom of the two ADG components. Certainly, non-isomorphic chain link connec-
tions across within-site ADG might also be reasonable in the ecological modeling
context. For instance, it might be reasonable to think that stream power at site s1,
upstream from site s2, might be correlated with macro-invertebrate health at s2. In
this case, however, because there is a direction to streamflow, the feed-forward Bayes
network model of Haas et al. (1994) seems more appropriate.

We now present two results regarding the conditional and marginal independencies
associated with ICG models. Since an ICG model is constructed from identical ADG
models, it seems appealing that some of the properties of the individual ADG models
carry over to the full ICG. This is, in fact, the substance of our first result; the marginal
and conditional independencies inherent in the individual ADGs also hold in the
ICG. In our second result, we show that some nodes in individual ADG components
are marginally independent of the corresponding nodes in other ADG components
making up the ICG. In a related result, we establish conditional independencies across
ACG components in the ICG model when we condition on the isomorphic nodes.

Together, our results allow a convenient factorization of the probability distribu-
tion described by the ICG model. We describe this factorization following the results
themselves. To simplify the presentation of these results, we state them in terms of
only two ADG components, although they are easily generalized to an arbitrary num-
ber of these components. Proofs (and heuristics for extension to arbitrary numbers of
components) are provided in Appendix B. For both results, we rely on the following
ICG construction. Let G1 = (V1, E1) and G2 = (V2, E2) be two identically distrib-

uted ADG. Let G =
(

V1 ∪V2, E1 ∪ E2 ∪ E∗j
)

, where E∗j = {(v1j, v2j), (v2j, v1j) : v1j ∈
V1 and v2j ∈ V2}, denote the ICG constructed from G1 and G2.

Result 1 For pairwise disjoint, nonempty subjects of V1 (equivalently, V2), A, B, C,

A |� B
∣∣ C in G1(G2)⇐⇒ A |� B

∣∣ C in G.



Environ Ecol Stat (2007) 14:27–40 33

This result asserts that conditional independencies that hold in the marginal ADG
also hold in the ICG.

For Result 2, we define an ancestral set as in Andersson et al. (2001). Consider the
graph G = (V, E), and take A ⊆ V. A node v ∈ V is an ancestor of a node a ∈ A if
there is a directed path from v to a in G. The ancestral set of A is

An(v)
def= A ∪ {v ∈ V : v is an ancestor of a for some a ∈ A}.

That is, An(A) is that subset of V that contains A and all of its ancestors. Also,
for notational convenience, we define the ∩∗ operator as follows. For a subset A of
V1 ∪V2, {

a1j, a2j
} ∈ A ∩∗ E∗j ,

if
{
a1j, a2j

} ∈ A and (a1j, a2j) ∈ E∗j .

Result 2

(a) For A1 ⊆ V1 and A2 ⊆ V2, if An(A1 ∪A2) ∩∗ E∗j = ∅ then A1 |� A2 in G.
(b) For A1 ⊆ V1 and A2 ⊆ V2 such that (A1∪A2)∩∗E∗j = ∅ but An(A1 ∪A2)∩∗E∗j ={

a1j, a2j
}
:

(1) A1\{a1k} |� A2\{a2k}
∣∣ {a1k, a2k}.

(2) A1\{a1k} |� a2k
∣∣ a1k.

(3) A2\{a2k} |� a1k
∣∣ a2k.

Result 2(a) indicates that marginal independence across ADG components used
to construct an ICG is maintained for those nodes in the ICG that lie above the
isomorphic nodes. Result 2(b) indicates in part that corresponding univariate com-
ponents below the isomorphic nodes in an ICG are conditionally independent, given
the isomorphic nodes.

The benefit of Results 1 and 2 comes in allowing a convenient factorization of
the joint probability distribution. From identical ADG G1, G2, . . . , Gn, suppose we
construct an ICG with isomorphic nodes E∗m. Then for V1 = {v11, . . . , v1k}, . . . , Vn =
{vn1, . . . , vnk}, the joint probability distribution of V1 ∪ · · · ∪Vn is

f (V1, . . . , Vn)|φ) =
⎡

⎣
n∏

i=1

⎧
⎨

⎩

m−1∏

j=1

f (vij|Pa(vij))

⎫
⎬

⎭

⎧
⎨

⎩

k∏

j=m+1

f (vij|Pa(vij))

⎫
⎬

⎭

⎤

⎦

×f (vim, . . . , vnm|Pa({v1m, . . . , vnm})).
In the final term of this expression, we model the joint distribution of the isomorphic
nodes conditional on their parents using a multivariate distribution. An implementa-
tion of this model is given next.

5 Bayes network and ICG parameterizations

To compare results with Van Sickle et al. (2004), we used the four explanatory vari-
ables they found to be most important for modeling the observed-to-expected ratio
of macro-invertebrate species: longitude (L), stream power (P), percent agricultural
development (A) and percent developed land (D); the latter two are measured within



34 Environ Ecol Stat (2007) 14:27–40

a 150-m buffer of the stream. We used H to denote the DOE index of macro-inver-
tebrate health. The correlation between the WINOE ratio in Van Sickle et al. (2004)
and our dispersers health metric, DOE, is quite high (ρ̂ = 0.93, n = 76). We used
n = 76, having removed four samples with unusually large streamflow. It is also worth
noting that while we would not think of longitude as “causing” a lowered DOE, there
might be a relationship in which sites that are “poorer” for macro-invertebrates are
more likely to be at the eastern end of the Willamette Valley.

We fit the multiple linear regression model as in Van Sickle et al. (2004), but using a
Bayes Network approach. That is, we assigned probability distributions to all explan-
atory variables, excluding longitude (we assume longitude to be fixed for all models).
This approach facilitates comparison with the Bayes network and ICG models, which
also assign probability distributions to all nodes. For the ADG version of the multiple
linear regression model, we took each explanatory variable to have a directed arrow
into the response, with no arrows between explanatory variables.

Exploratory analysis indicates that both stream power (transformed by the quartic
root following Van Sickle et al. (2004) and agricultural land cover follow Normal
distributions. Imposing a Normality assumption on the percent developed land cover
is more difficult—the distribution is highly skewed. We therefore modeled this vari-
able using an exponential probability distribution. Our Bayes network multiple linear
regression model (MLR) is

Ai
iid∼ N(μa, σ 2

a ), Di
iid∼ Exp(θ), Pi

iid∼ N(μp, σ 2
p ), Hi

ind∼ N(γi, σ 2), (1)

where
γi = β0 + β1Li + β2Ai + β3Ui + β4Pi (2)

for i = 1, 2, . . . n.
For the Bayes network model (BN), where we model correlations between explan-

atory variables, we use Markov factorizations to write the distribution of all variables
conditional on its parents. But first, we must decide on a structure for the BN. To
do this, we use Tetrad 4.3 (Spirtes et al. 1993; http://www.phil.cmu.edu/tetrad, 2005),
a graphical modeling freeware package. Tetrad assumes Normal distributions for all
nodes, which is not our situation, though the resulting model is reasonable ecologically.

The graphical structure suggested by Tetrad is shown in Fig. 4. Interestingly, longi-
tude is not pulled into the model at all, and there is no arrow from percent agricul-
ture to DOE, whereas both percent developed and stream power have arrows into
percent agricultural development and DOE. This makes some sense ecologically, in
that stream power is a major driver of stream substrate size, which is in turn a major
controlling factor for stream macro-invertebrates. Developed land in the network
buffer may be related to agriculture, because as the landscape is urbanized (devel-
oped) in the Willamette Valley, it is usually by conversion of agricultural land. The
major axis of the Willamette Valley is oriented north-south, with sites at the eastern
and western edges of the Valley being steeper and less desirable for agriculture. This
may help explain the absence of arrows from the longitude node.

To parameterize this model structure, we take

Di
iid∼ Exp(θ), Pi

iid∼ N(μp, σ 2
p ), Ai

ind∼ N(δi, σ 2
a ), Hi

ind∼ N(γi, σ 2), (3)
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Fig. 4 Bayesian network
suggested by Tetrad (2003) Stream

Power

Longitude

Agricultural

Developed

Health
Index

where

δi = φ0 + φ1Pi + φ2Di, (4)

γi = β0 + β1Pi + β2Di. (5)

We now turn to the ICG models in which we parameterize the isomorphic nodes
using a spatial autoregressive model. For sample location, si, for i = 1, . . . , n, let Ni
denote the neighborhood set for location si, in which sj ∈ Ni if sj is in the same stream
as si. For sj ∈ Ni, we write sj ∼ si. We define an n× n weight matrix W, in which each
entry, wij, is defined as follows:

wij =
{

aij : si ∼ sj,
0 : otherwise,

where

aij =
1

||si−sj||∑
sk∈Ni

1
||si−sk||

,

using the Euclidean distance metric, || · ||. In this way, observations are defined as
neighbors only if they are in the same intensively sampled stream network.

Following Congdon (2003, p. 253), to add an autoregressive component to the
health metric node (this is ICG1) we pre-multiply both the health metric and stream
power and percent urban land cover by W, and modify the model component of (5)
to be

γi = β0 + β1Pi + β2Di + ρWHi − ρβ1WPi − ρβ2WDi. (6)

Similarly, to add an autoregressive component to the agriculture node (this is ICG2),
we pre-multiply agriculture, stream power and urban by W and replace (5) with

δi = φ0 + φ1Pi + φ2Di + ρWAi − ρφ1WPi − ρφ2WDi. (7)

5.1 Prior distributions

For the regression parameters βand φin each of these models, we use non-informative
Normal priors. Similarly, for each variance term, σ 2, we use non-informative inverse-
gamma priors. The more difficult parameterization involves the spatial parameter, ρ,
in the ICG models. We restrict attention to ρ ∈ (0, 1), as positive spatial correlation is
more realistic within streams, and following Congdon (2003, Example 7.1), we use a
uniform prior on the interval zero to one (a beta prior with parameters α = β = 1).
To compare the Bayes network and ICG models, we use the Bayesian information
criterion (BIC; Schwarz, 1978).
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6 Results for the Willamette Valley data

All models are fit using WinBUGS 1.4 (Spielgelhalter et al. 2003). The weighting
W is fairly sparse in our case, as only five streams were intensively sampled. There-
fore, we also examined (assuming isotropy) a correlogram of the residuals, which
indicates positive spatial correlation ρ̂ = 0.73) at distances less than 4 km. This
certainly includes distances between many of the samples taken from within one
of the five intensively sampled streams. After a burn-in period, we assess conver-
gence in WinBUGS by starting independent chains at different values and assess-
ing the “scale reduction” (Gelman et al. 2004, p. 297) for each component of the
chain.

In Table 2, we show results from fitting each of the four models: the MLR model,
the BN model assuming independence between samples, and the two ICG models—
ICG1, with isomorphic nodes DOE, and ICG2, with isomorphic nodes corresponding
to the percent agriculture nodes. Notice the BN and ICG2 match almost exactly.
The estimated correlation corresponding to the percent agriculture nodes in ICG2 is
essentially zero, and so the model is virtually identical to BN. A significant, positive
correlation is estimated under ICG1, indicating the dependence of samples within the
intensively sampled streams.

By fitting the MLR model as a BN model, we are able to compare it with the BN
and ICG models using a likelihood-based criterion. Table 3 shows this comparison of
the four models using BIC. The ICG model with the spatial autoregressive component
on the health index is best by a small margin, followed by the BN model, and then the
remaining two models. It does appear that the penalty for including an extra param-
eter for spatial dependence in the DOE nodes is offset by the gain in the likelihood
component of the BIC.

Table 2 Results—posterior means (standard deviations)—from the multiple regression model
(MLR), the Bayes network model assuming independence between samples (BN), and the two
isomorphic chain graph models

Parameter MLR BN ICG1 ICG2

μp 1.14 (0.03) 1.14 (0.03) 1.14 (0.04) 1.14 (0.04)
σp 0.30 (0.02) 0.30 (0.03) 0.30 (0.03) 0.30 (0.03)
μa 42.7 (2.8) NA NA NA
σa 24.3 (2.0) 20.6 (1.7) 20.6 (1.8) 20.8 (1.8)
φ0 NA 87.58 (9.6) 87.63 (9.6) 85.74 (10.0)
φ1 NA −0.46 (0.11) −0.46 (0.11) −0.46 (0.12)
φ2 NA −35.04 (8.0) −35.06 (8.0) −34.12 (8.3)
β0 31.58 (7.9) 0.14 (0.07) 0.13 (0.06) 0.14 (0.07)
β1 −0.25 (0.06) NA NA NA
β2 −0.0023 (0.0007) NA NA NA
β3 −0.0032 (0.0008) −0.0019 (0.0008) −0.0014 (0.0008) −0.0019 (0.0008)
β4 0.30 (0.05) 0.34 (0.07) 0.31 (0.05) 0.34 (0.06)
σ 0.14 (0.01) 0.14 (0.01) 0.13 (0.01) 0.14 (0.01)
ρ NA NA 0.42 (0.16) 0.02 (0.02)
θ 0.09 (0.01) 0.09 (0.01) 0.09 (0.01) 0.09 (0.01)

ICG1 denotes the model with isomorphic nodes corresponding to DOE and ICG2 denote the model
with isomorphic nodes corresponding to percent agriculture
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Table 3 Comparison of the multiple linear regression model (MLR), the Bayes network model
assuming independent samples (BN), and the two ICG models—ICG1 has DOE isomorphic nodes
and ICG2 has percent agriculture isomorphic nodes

Model BIC

MLR 1184
BN 1179
ICG1 1174
ICG2 1184

7 Discussion

The isomorphic chain graph model represents a useful and practical extension BN
models that assume statistical independence between observations used to estimate
parameters of the model. Specifically, two key conditional independence results are
inherited from the BN paradigm, whereby the ICG model also affords a convenient
factorization of the joint probability distribution depicted by the graphical model. In
the examples described here, the substantive conclusions do not change with a change
in the nodes modeled isomorphically; however, the overall variability explained by
the different models does reflect their differences.

One possible extension to the ICG model incorporates several isomorphic nodes.
Referring back to Figs. 1 and 2, we might consider chain graph connections at both the
land use node and the health metric node. Connections between this approach and
co-kriging might warrant further investigation, although the computational burden
might be a constraining factor. Further, placing the isomorphic nodes at the “top”
of the ICG, for example, at a land-use node, seems similar in spirit to a hierarchical
structuring of nodes across sites. This connection is the topic of ongoing research.
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Appendix A

This notation and terminology is taken from Andersson et al. (2001).

Definition 1 (Separation) For a UDG, GU ≡ (Vu, Eu), and for non-empty, pairwise
disjoint subsets A, B and C of Vu, A and B are said to be separated by C in GU if all
paths in GU between A and B pass through C. A and B are separated in GU if there
are no paths between them in GU.

Definition 2 (Subgraph) A graph G′ ≡ (V′, E′) is called a subgraph of a graph G ≡
(V, E) if V′ ⊆ V and E′ ⊆ E. A subset A of V induces a subgraph, denoted GA ≡
(A, EA), where EA is that subset of edges in E with both endpoints in A.
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Definition 3 (Coherent set) For two nodes v, w ∈ V, v is coherent to w if there is an
undirected path in G between v and w. The coherent set of a set A ⊆ V is

Co(A)
def= A ∪ {v ∈ V : v is coherent to a for some a ∈ A}.

Co(A) is that subset of V that contains A and all nodes coherent to A.

Definition 4 (Undirected subgraph) For a graph G ≡ (V, E), the undirected subgraph
is

G∗ ≡ (V, E∗),

where
E∗ = {(v, w) : (v, w) ∈ E and (w, v) ∈ E}.

Definition 5 (Extended subgraph) For an ADG, G ≡ (V, E) with pairwise disjoint
subsets A, B and C of V, the extended subgraph is

G[A ∪ B ∪ C] def= GAn(A∪B∪C).

For a CG G ≡ (V, E) with pairwise disjoint subsets A, B and C of V, the extended
subgraph is

G[A ∪ B ∪ C] def= GAn(A∪B∪C) ∪G∗Co(An(A∪B∪C)),

where for G1 ≡ (V1, E1) and G2 ≡ (V2, E2), G1 ∪G2 ≡ (V1 ∪V2, E1 ∪ E2).

Definition 6 (Augmented graph) For an ADG or CG G ≡ (V, E), the augmented
graph, denoted Ga, is an UDG constructed according to:

(1) identify all flags and bi-flags (see Fig. 5);
(2) moralize all flags and bi-flags (see Fig. 6);
(3) replace all directed edges with undirected edges (see Fig. 6).

Figure 5 shows flags in (a) – (c). These are ordered triples of nodes with the given
configurations. If G is an ADG, then the only kind of flag is that in Fig. 5a. Figure
5(d) encodes four different configurations of bi-flags, in that ? can be replaced by
a directed edge in either direction, an undirected edge or no edge. Moralizing flags
and bi-flags is accomplished by adding undirected edges where no edges exist (in the
three- or four-node system). Figure 6 shows the moralized versions of the flags and
bi-flags of Fig. 5.

Definition 7 (d-separation) For an ADG G ≡ (V, E) and pairwise disjoint subsets
of V, A, B and C, if A and B are separated by C in G[A ∪ B ∪ C]a, then A and B
are d-separated by C in G. If A and B are separated in G[A ∪ B]a, then A and B are
d-separated in G. Pearl’s result then implies the conditional (marginal) independencies.

Fig. 5 (a), (b), (c) flags; (d) a
bi-flag

(a) (b) (c) (d)

Fig. 6 Augmented versions of
the flags in Figures 5a,b,c and
the bi-flags in Figure 5d

(a) (b) (c) (d)
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Definition 8 (AMP-separation) Suppose A, B, and C are pairwise disjoint subsets
of V in a CG, G ≡ (V, E). Then if C separates A and B in G[A ∪ B ∪ C]a, this is
called AMP-separation and A and B are conditionally independent given C, denoted
A |� B

∣∣C. In the special case that C = ∅, then A and B are marginally independent if
there are no paths connecting them in G[A ∪ B]a.

Appendix B

Proof of Result 1 First suppose that for subsets A, B, C of V1, A |� B
∣∣C in G. Then A

and B are separated by C in G[A ∪ B ∪ C]a. Since G1[A ∪ B ∪ C] is an ADG subgraph
of G[A ∪ B ∪ C], it follows that G1[A ∪ B ∪ C]a is a CG subgraph of G[A ∪ B ∪ C]a.
As any subgraph has at most as many edges as the original graph, it must be that C
separates A and B in G1[A ∪ B ∪ C]a, whereby A |� B

∣∣C in G1. Next suppose that
A |� B

∣∣C in G1. Because G1[A ∪ B ∪ C] = GAn(A∪B∪C), write

G[A ∪ B ∪ C] = G1[A ∪ B ∪ C] ∪G∗Co(An(A∪B∪C)).

If An(A ∪ B ∪ C) ∩∗ E∗j = ∅, then G[A ∪ B ∪ C] = G1[A ∪ B ∪ C] and the result
holds. On the other hand, if An(A ∪ B ∪ C) ∩∗ E∗j �= ∅, then any flag introduced by
including G∗Co(An(A∪B∪C))

must of the kind in Fig. 5b or c. Therefore, no “moralizing”
of the graph will result in a connection across subgraphs. Therefore, Result 1 holds.

Proof of Result 2 For (a), as there are no nodes (a1j, a2j) ∈ An(A1 ∪A2), such that
(a1j, a2j) ∈ E∗j , G[A1 ∪A2] = GAn(A1∪A2) = G1[An(A1)]∪G2[An(A2)]. There are no
flags or bi-flags connecting nodes in A1 and A2 in G[An(A1 ∪A2)], so that augmenting
the graph results only in changing directed edges to undirected edges, whereby, A1 and
A2 are AMP-separated in G. For (b), it is useful to notice that if v ∈ An(A1 ∪A2) ∩
A1\{a1}, then necessarily, (a1, v) ∈ E1. Similarly, if w ∈ An(A1 ∪A2) ∩A2\{a2}, then
(a2, w) ∈ E2. Hence, the only path between v and w in G[A1 ∪A2] takes the form,
v ←− a1 — a2 −→ w, which is not a bi-flag. Therefore, in the augmented graph
G[A1 ∪A2]a, the only path between v and w must pass through both a1 and a2,
whereby a1 and a2 AMP-separate v and w in G. This completes the proof.

Heuristic for extending Results 1 and 2 to n iid ADG: this is essentially a proof
by induction. What remains is to evaluate flags and bi-flags introduced by adding an
additional ADG component to an existing ICG. But these will affect only the results
in the way described in the proof of Result 2—that is, both Results still hold.
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